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1
TABLE-DRIVEN ROUTING IN A
DRAGONFLY PROCESSOR INTERCONNECT
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority, under 35
U.S.C. §119(e), to U.S. Provisional Patent Application Ser.
No. 61/410,641, filed on Nov. 5, 2010 and entitled “TABLE-
DRIVEN ROUTING IN A DRAGONFLY PROCESSOR
INTERCONNECT NETWORK,” inventors Mike Parker et
al. The disclosure of the prior Application is considered part
of and is incorporated by reference in the disclosure of this
Application.

FIELD OF THE INVENTION

The invention relates generally to computer interconnect
networks, and more specifically in one embodiment to table-
driven routing in a dragonfly topology processor interconnect
network.

LIMITED COPYRIGHT WAIVER

A portion of the disclosure of this patent document con-
tains material to which the claim of copyright protection is
made. The copyright owner has no objection to the facsimile
reproduction by any person of the patent document or the
patent disclosure, as it appears in the U.S. Patent and Trade-
mark Office file or records, but reserves all other rights what-
soever.

BACKGROUND

Computer systems have long relied on network connec-
tions to transfer data, whether from one computer system to
another computer system, one computer component to
another computer component, or from one processor to
another processor in the same computer. Most computer net-
works link multiple computerized elements to one another,
and include various functions such as verification that a mes-
sage sent over the network arrived at the intended recipient,
confirmation of the integrity of the message, and a method of
routing a message to the intended recipient on the network.

Processor interconnect networks are used in multiproces-
sor computer systems to transfer data from one processor to
another, or from one group of processors to another group.
The number of interconnection links can be very large with
computer systems having hundreds or thousands of proces-
sors, and system performance can vary significantly based on
the efficiency of the processor interconnect network. The
number of connections, number of intermediate nodes
between a sending and receiving processing node, and the
speed or type of connection all play a factor in the intercon-
nect network performance.

Similarly, the network topology, or pattern of connections
used to tie processing nodes together affects performance,
and remains an area of active research. It is impractical to
directly link each node to each other node in systems having
many tens of processors, and all but impossible as the number
of processors reaches the thousands.

Further, the cost of communications interfaces, cables, and
other factors can add significantly to the cost of poorly
designed or inefficient processor interconnect networks,
especially where long connections or high-speed fiber optic
links are required. A processor interconnect network designer
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is thereby challenged to provide fast and efficient communi-
cation between the various processing nodes, while control-
ling the number of overall links, and the cost and complexity
of the processor interconnect network.

The topology of a network, or the method used to deter-
mine how to link a processing node to other nodes in a
multiprocessor computer system, is therefore an area of inter-
est.

SUMMARY

The invention comprises in one example a multiprocessor
computer system having a dragonfly processor interconnect
network that comprises a plurality of processor nodes and a
plurality of routers. The routers are operable route data by
selecting from among a plurality of network paths from a
target node to a destination node in the dragonfly network
based on one or more routing table, such as local and global
routing tables, and minimal and non-minimal routing tables.

BRIEF DESCRIPTION OF THE FIGURES

FIG.1is a block diagram of a dragonfly network topology,
consistent with an example embodiment of the invention.

FIG. 2 is a graph illustrating scalability of a dragonfly
network in nodes for various router radices, consistent with an
example embodiment of the invention.

FIG. 3 is a block diagram illustrating a dragonfly network
topology, consistent with an example embodiment of the
invention.

FIG. 4 is block diagram of dragonfly network topology
groups, consistent with some example embodiments of the
invention.

FIG. 5 is a block diagram of a dragonfly network illustrat-
ing minimal and non-minimal routing using virtual channels,
consistent with an example embodiment of the invention.

FIG. 6 is a graph illustrating latency v. offered load for a
variety of routing algorithms using various traffic patterns,
consistent with an example embodiment of the invention.

FIG. 7 is a node group diagram of a dragonfly topology
network illustrating adaptive routing via global channels
using backpressure from intermediate nodes, consistent with
an example embodiment of the invention.

FIGS. 8A-8B are node diagrams illustrating credit round
trip latency tracking, consistent with an example embodiment
of the invention.

FIG. 9 shows a router configuration, consistent with an
example embodiment of the invention.

FIG. 10 shows a group of nodes in a dragonfly processor
interconnect network, consistent with an example embodi-
ment of the invention.

FIG. 11 shows connections between several node groups in
a dragonfly processor interconnect network, consistent with
an example embodiment of the invention.

FIG. 12 shows a router table configuration for a dragonfly
processor interconnect network router, consistent with an
example embodiment of the invention.

DETAILED DESCRIPTION

In the following detailed description of example embodi-
ments of the invention, reference is made to specific examples
by way of drawings and illustrations. These examples are
described in sufficient detail to enable those skilled in the art
to practice the invention, and serve to illustrate how the inven-
tion may be applied to various purposes or embodiments.
Other embodiments of the invention exist and are within the
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scope of the invention, and logical, mechanical, electrical,
and other changes may be made without departing from the
subject or scope of the present invention. Features or limita-
tions of various embodiments of the invention described
herein, however essential to the example embodiments in
which they are incorporated, do not limit the invention as a
whole, and any reference to the invention, its elements, opera-
tion, and application do not limit the invention as a whole but
serve only to define these example embodiments. The follow-
ing detailed description does not, therefore, limit the scope of
the invention, which is defined only by the appended claims.

Interconnection networks are widely used to connect pro-
cessors and memories in multiprocessors, as switching fab-
rics for high-end routers and switches, and for connecting I/O
devices. As processor and memory performance continues to
increase in a multiprocessor computer system, the perfor-
mance of the interconnection network plays a central role in
determining the overall performance of the system. The
latency and bandwidth of the network largely establish the
remote memory access latency and bandwidth.

A goodinterconnection network typically designed around
the capabilities and constraints of available technology.
Increasing router pin bandwidth, for example, has motivated
the use of high-radix routers in which increased bandwidth is
used to increase the number of ports per router, rather than
maintaining a small number of ports and increasing the band-
width per port. The Cray Black Widow system, one of the first
systems to employ a high-radix network, uses a variant of the
folded-Clos topology and radix-64 routers—a significant
departure from previous low-radix 3-D torus networks.
Recently, the advent of economical optical signaling enables
topologies with long channels. However, these long optical
channels remain significantly more expensive than short elec-
trical channels. A Dragonfly topology was therefore intro-
duced, exploiting emerging optical signaling technology by
grouping routers to further increase the effective radix of the
network.

The topology of an interconnection network largely deter-
mines both the performance and the cost of the network.
Network cost is dominated by the cost of channels, and in
particular the cost of the long, global, inter-cabinet channels.
Thus, reducing the number of global channels can signifi-
cantly reduce the cost of the network. To reduce global chan-
nels without reducing performance, the number of global
channels traversed by the average packet must be reduced.
The dragonfly topology reduces the number of global chan-
nels traversed per packet using minimal routing to one.

Dragonfly Topology Example

To achieve this global diameter of one, very high-radix
routers, with a radix of approximately 2VN (where N is the
size of the network) are used. While radix 64 routers have
been introduced, and a radix of 128 is feasible, much higher
radices in the hundreds or thousands are needed to build
machines that scale to 8K-1M nodes if each packet is limited
to only one global hop using traditional very high radix router
technology. To achieve the benefits of a very high radix with
routers without requiring hundreds or thousands of ports per
node, the Dragonfly network topology proposes using a group
of routers connected into a subnetwork as one very high radix
virtual router. This very high effective radix in turn allows us
to build a network in which all minimal routes traverse at most
one global channel. It also increases the physical length of the
global channels, exploiting the capabilities of emerging opti-
cal signaling technology.
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Achieving good performance on a wide range of traffic
patterns on a dragonfly topology involves selecting a routing
algorithm that can effectively balance load across the global
channels. Global adaptive routing (UGAL) can perform such
load balancing ifthe load ofthe global channels is available at
the source router, where the routing decision is made. With
the Dragonfly topology, however, the source router is most
often not connected to the global channel in question. Hence,
the adaptive routing decision is made based on remote or
indirect information.

The indirect nature of this decision leads to degradation in
both latency and throughput when conventional UGAL
(which uses local queue occupancy to make routing deci-
sions) is used. We propose two modifications to the UGAL
routing algorithm for the Dragonfly network topology that
overcome this limitation with performance results approach-
ing an ideal implementation using global information. Add-
ing selective virtual-channel discrimination to UGAL
(UGAL-VC H) eliminates bandwidth degradation due to
local channel sharing between minimal and non-minimal
paths. Using credit-round trip latency to both sense global
channel congestion and to propagate this congestion infor-
mation upstream (UGAL-CR) eliminates latency degradation
by providing much stifter backpressure than is possible using
only queue occupancy for congestion sensing.

High-radix networks reduce the diameter of the network
but require longer cables compared to low-radix networks.
Advances in signaling technology and the recent develop-
ment of active optical cables facilitate implementation of
high-radix topologies with longer cables.

An interconnection network is embedded in a packaging
hierarchy. At the lowest level, the routers are connected via
circuit boards, which are then connected via a backplane or
midplane. One or more backplanes are packaged in a cabinet,
with multiple cabinets connected by electrical or optical
cables to form a complete system. The global (inter-cabinet)
cables and their associated transceivers often dominate the
cost of a network. To minimize the network cost, the topology
should be matched to the characteristics of the available inter-
connect technologies, such as cost and performance.

The maximum bandwidth of an electrical cable drops with
increasing cable length because signal attenuation due to skin
effect and dielectric absorption increases linearly with dis-
tance. For typical high-performance signaling rates (10-20
Gb/s) and technology parameters, electrical signaling paths
are limited to about 1 m in circuit boards and 10 m in cables.
At longer distances, either the signaling rate must be reduced
or repeaters inserted to overcome attenuation.

Historically, the high cost of optical signaling limited its
use to very long distances or applications that demanded
performance regardless of cost. Although optical cables have
a higher fixed cost, their ability to transmit data over long
distances at several times the data rate of copper cables results
in a lower cost per unit distance than electrical cables. Based
on the data available using current technologies, the break-
even point is at 10 m. For distances shorter than 10 m, elec-
trical signaling is less expensive. Beyond 10 m, optical sig-
naling is more economical. The Dragonfly topology exploits
this relationship between cost and distance. By reducing the
number of global cables, it minimizes the effect of the higher
fixed overhead of optical signaling, and by making the global
cables longer, it maximizes the advantage of the lower per-
unit cost of optical fibers.

The dollar cost of a dragonfly also compares favorably to a
flattened butterfly for networks larger than 1 k nodes, showing
approximately a 10% savings for up to 4 k nodes, and
approximately a 20% cost savings relative to flattened butter-
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fly topologies for more than 4 k nodes as the dragonfly has
fewer long, global cables. Folded Clos and 3-d torus networks
suffer in comparison, because of the larger number of cables
needed to support high network diameters. For a network of
only 1 k nodes, the dragonfly is 62% the cost of a 3-d torus
network and 50% that of a folded Clos network. This reduc-
tion in network cost is directly correlated to a reduction in
network power consumed, which is a significant advantage
for large networks as well as for installations that are desir-
ably environmentally friendly.

The example embodiments of a dragonfly network pre-
sented here show how use of a group of routers as a virtual
router can increase the effective radix of a network, and hence
reduce network diameter, cost, and latency. Because the drag-
onfly topology reduces the number global cables in a net-
work, while at the same time increasing their length, the
dragonfly topology is particularly well suited for implemen-
tations using emerging active optical cables—which have a
high fixed cost but a low cost per unit length compared to
electrical cables. Using active optical cables for the global
channels, a dragonfly network reduces cost by 20% compared
to a flattened butterfly and by 52% compared to a folded Clos
network of the same bandwidth.

To show an example Dragonfly network topology, the fol-
lowing symbols are used in the description of the dragonfly
topology and in example routing algorithms presented later:

N Number of network terminals

p Number of terminals connected to each router

a Number of routers in each group

k Radix of the routers

k_Effective radix of the group (or the virtual router)

h Number of channels within each router used to connect to

other groups

g Number of groups in the system

q Queue depth of an output port

qvc Queue depth of an individual output VC

H Hop count

Outi Router output port i

The Dragonfly topology is a hierarchical network with
three levels, as shown in FIG. 1: routers (104, 105, and 106),
groups (101, 102, and 103), and system. At the router level,
each router has connections to p nodes, a—1 local channels—
to other routers in the same group—and h global channels—
to routers in other groups. Therefore the radix (or degree) of
each router is defined as k=p+a+h-1. A group consists of a
routers connected via an intra-group interconnection network
formed from local channels, as shown at 101 in FIG. 1. Each
group has ap connections to terminals and ah connections to
global channels, and all of the routers in a group collectively
act as a virtual router with radix k'=a(p+h). This very high
radix, k"™>>k enables the system level network to be realized
with very low global diameter (the maximum number of
expensive global channels on the minimum path between any
two nodes). Up to g=ah+1 groups (N=ap(ah+1) terminals)
can be connected with a global diameter of one. In contrast, a
system-level network built directly with radix k routers would
require a larger global diameter.

In a maximum-size (N=ap(ah+1)) dragonfly, there is
exactly one connection between each pair of groups. In
smaller dragonflies, there are more global connections out of
each group than there are other groups. These extra global
connections are distributed over the groups with each pair of
groups connected by at least _ah+1 g _channels.

The dragonfly parameters a, p, and h can have any values.
However, to balance channel load, the network in this
example has a=2p=2h. Because each packet traverses two
local channels along its route (one at each end of the global
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channel) for one global channel and one terminal channel,
this ratio maintains balance. Because global channels are
expensive, deviations from this 2:1 ratio are done in some
embodiments in a manner that overprovisions local and ter-
minal channels, so that the expensive global channels remain
fully utilized. That is, the network is balanced in such
examples so that a=2h, 2p=2h.

The scalability of a balanced dragonfly is shown in FIG. 2.
By increasing the effective radix, the dragonfly topology is
highly scalable-with radix-64 routers, the topology scales to
over 256 k nodes with a network diameter of only three hops.
Arbitrary networks can be used for the intra-group and inter-
group networks in FIG. 1. In the example presented here, we
use a 1-D flattened butterfly or a completely-connected topol-
ogy for both networks. A simple example of the dragonfly is
shown in FIG. 3 with p=h=2 (two processing nodes per router
and two channels within each router coupled to other groups),
a=4 (four routers in each group) that scales to N=72 (72 nodes
in the network) with k=7 (radix 7) routers. By using virtual
routers, the effective radix is increased from k=7 to k'=16, as
group G, of FIG. 3 has eight global connections and eight
node connections.

The global radix, k', can be increased further by using a
higher-dimensional topology for the intra-group network.
Such a network may also exploit intra-group packaging local-
ity. For example, a 2-D flattened butterfly is shown in FIG. 4
at401, which has the same k' as the group shown in FIG. 5 but
exploits packaging locality by providing more bandwidth to
local routers. A 3-dimension flattened butterfly is used in FIG.
4 at 402 to increase the effective radix from k'=16 to K'=32—
allowing the topology to scale up to N=1056 using the same
k=7 router as in FIG. 1.

To increase the terminal bandwidth of'a high-radix network
such as a dragonfly, channel slicing can be employed. Rather
than make the channels wider, which would decrease the
router radix, multiple network can be connected in parallel to
add capacity. Similarly, the dragonfly topology in some
embodiments can also utilize parallel networks to add capac-
ity to the network. In addition, the dragonfly networks
described so far assumed uniform bandwidth to all nodes in
the network. However, if such uniform bandwidth is not
needed, bandwidth tapering can be implemented by removing
inter-group channels among some of the groups.

Dragonfly Routing Examples

A variety of minimal and non-minimal routing algorithms
can be implemented using the dragonfly topology. Some
embodiments of global adaptive routing using local informa-
tion lead to limited throughput and very high latency at inter-
mediate loads. To overcome these problems, we introduce
new mechanisms to global adaptive routing, which provide
performance that approaches an ideal implementation of glo-
bal adaptive routing.

Minimal routing in a dragonfly from source node s attached
to router Rs in group Gs to destination node d attached to
router Rd in group Gd traverses a single global channel and is
accomplished in three steps:

Step 1: If Gs_=Gd and Rs does not have a connection to Gd,
route within Gs from Rs to Ra, a router that has a global
channel to Gd.

Step 2: If Gs_=Gd, traverse the global channel from Ra to
reach router Rb in Gd.

Step 3: If Rb_=Rd, route within Gd from Rb to Rd.

This minimal routing works well for load-balanced traffic,

but results in poor performance on adversarial traffic patterns.
To load-balance adversarial traffic patterns, Valiant’s algo-
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rithm can be applied at the system level—routing each packet
first to a randomly-selected intermediate group Gi and then to
its final destination d. Applying Valiant’s algorithm to groups
suffices to balance load on both the global and local channels.
This randomized non-minimal routing traverses at most two
global channels and requires five steps:

Step 1: If Gs_=Gi and Rs does not have a connection to Gi,
route within Gs from Rs to Ra, a router that has a global
channel to Gi.

Step 2: If Gs_Gi traverse the global channel from Ra to
reach router Rx in Gi.

Step 3: If Gi_=Gd and Rx does not have a connection to Gd,
route within Gi from Rx to Ry, a router that has a global
channel to Gd.

Step 4: If Gi_=(Gd, traverse the global channel from Ry to
router Rb in Gd.

Step 5: If Rb_=Rd, route within Gd from Rb to Rd.

To prevent routing deadlock, two virtual channels (VCs)
are employed for minimal routing and three VCs are required
for non-minimal routing, as shown in FIG. 5. These virtual
router assignments eliminate all channel dependencies due to
routing. For some applications, additional virtual channels
may be required to avoid protocol deadlock—e.g., for shared
memory systems, separate sets of virtual channels may be
required for request and reply messages.

A variety of routing algorithms for the dragonfly topology
have been evaluated, including:

Minimal (MIN): The minimal path is taken as described

previously.

Valiant (VAL) [32]: Randomized non-minimal routing as
described previously.

Universal  Globally-Adaptive  Load-balanced  [29]
(UGALG,UGAL-L) UGAL chooses between MIN and
VAL on a packet-by-packet basis to load-balance the
network. The choice is made by using queue length and
hop count to estimate network delay and choosing the
path with minimum delay. We implement two versions
of UGAL.

UGAL-L—uses local queue information at the current
router node.

UGAL-G—uses queue information for all the global chan-
nels in Gs—assuming knowledge of queue lengths on
other routers. While difficult to implement, this repre-
sents an ideal implementation of UGAL since the load-
balancing is required of the global channels, not the local
channels.

The different routing algorithms are evaluated using both
benign and adversarial synthetic traffic patterns, as shown in
FIG. 6. Latency v. offered load is shown for the four routing
algorithms, using both uniform random traffic at 601 and
adversarial traffic at 602. The use of a synthetic traffic pattern
allows us to stress the topology and routing algorithm to fully
evaluate the network. For benign traffic such as uniform ran-
dom (UR), MIN is sufficient to provide low latency and high
throughput, as shown at 601 of FIG. 6. VAL achieves approxi-
mately half of the network capacity because its load-balanc-
ing doubles the load on the global channels. Both UGAL-G
and UGAL-L approach the throughput of MIN, but with
slightly higher latency near saturation. The higher latency is
caused by the use of parallel or greedy allocation where the
routing decision at each port is made in parallel. The use of
sequential allocation will reduce the latency at the expense of
a more complex allocator.

Adaptive routing on the dragonfly is challenging because it
is the global channels, the group outputs, that need to be
balanced, not the router outputs. This leads to an indirect
routing problem. Each router picks a global channel to use
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using only local information that depends only indirectly on
the state of the global channels. Previous global adaptive
routing methods used local queue information, source queues
and output queues, to generate accurate estimates of network
congestion. In these cases, the local queues were an accurate
proxy of global congestion, because they directly indicated
congestion on the routes they initiated. With the dragonfly
topology, however, local queues only sense congestion on a
global channel via backpressure over the local channels. If the
local channels are overprovisioned, significant numbers of
packets must be enqueued on the overloaded minimal route
before the source router will sense the congestion. This
results in a degradation in throughput and latency as shown
earlier in FIG. 6 at 602.

A throughput issue with UGAL-L arises due to a single
local channel handling both minimal and non-minimal traffic.
For example, in FIG. 7, a packet in R1 has a minimal path
which uses gc7 and a nonminimal path which uses gc6. Both
paths share the same local channel from R1 to R2. Because
both paths share the same local queue (and hence have the
same queue occupancy) and the minimal path is shorter (one
global hop vs two), the minimal channel will always be
selected, even when it is saturated. This leads to the minimal
global channel being overloaded and the non-minimal global
channels that share the same router as the minimal channel
being under utilized. With UGAL-G, the minimal channel is
preferred and the load is uniformly balanced across all other
global channels. With UGAL-L, on the other hand, the non-
minimal channels on the router that contains the minimal
global channel are under utilized—resulting in a degradation
of network throughput.

To overcome this limitation, we modify the UGAL algo-
rithm to separate the queue occupancy into minimal and
nonminimal components by using individual VCs (UGAL-L
VO).

if (qm veHm = qnm veHnm )
route minimally;

else
route nonminimally;

where the subscript m and nm denote the minimal and non-
minimal paths. If the VC assignment of FIG. 5 is used, qm
ve=q(V C1) and qnm ve=q(V C0).

When compared, UGAL-LVC matches the throughput of
UGAL-G on a WC traffic pattern but for UR traffic, the
throughput is limited, with approximately 30% reduction in
throughput. For the WC traffic, where most of the traffic needs
to be sent non-minimally, UGALLVC performs well since the
minimal queue is heavily loaded. However, for load-balanced
traffic when most traffic should be sent minimally, individual
VCs do not provide an accurate representation of the channel
congestion—resulting in throughput degradation.

To overcome this limitation, we further modify the UGAL
algorithm to separate the queue occupancy into minimal and
non-minimal components only when the minimal and non-
minimal paths start with the same output port. Our hybrid
modified UGAL routing algorithm (UGAL-LVC H) is:

if (gqmHm < gnmHnm && Outm_ = Outnm ) | | (gm veHm < qnm
veHnm && Outm = Outnm)

route minimally;
else

route nonminimally;




US 9,282,037 B2

9

Compared to UGAL-LVC, UGAL-LVC H provides the
same throughput on WC traffic pattern but matches the
throughput of UGAL-G on UR traffic but resulting in nearly
2x higher latency at an offered load of 0.8, near saturation.
ForWC traffic, UGAL-LVC H also results in higher interme-
diate latency compared to UGAL-G.

The high intermediate latency of UGAL-L is due to mini-
mally-routed packets having to fill the channel buffers
between the source and the point of congestion before con-
gestion is sensed. Our research shows that non-minimally
routed packets have a latency curve comparable to UGAL-G
while minimally-routed packets see significantly higher
latency. As input buffers are increased, the latency of mini-
mally-routed packets increases and is proportional to the
depth of the buffers. A histogram of latency distribution
shows two clear distributions—one large distribution with
low latency for the non-minimal packets and another distri-
bution with a limited number of packets but with much higher
latency for the minimal packets.

To understand this problem with UGAL-L, in the example
dragonfly group shown in FIG. 7, assume a packet in R1 is
making its global adaptive routing decision of routing either
minimally through gc0 or non-minimally through gc7. The
routing decision needs to load balance global channel utili-
zation and ideally, the channel utilization can be obtained
from the queues associated with the global channels, q0 and
q3. However, q0 and q3 queue informations are only available
at RO and R2 and not readily available at R1—thus, the
routing decision can only be made indirectly through the local
queue information available at R1.

In this example, q1 reflects the state of q0 and q2 reflects
the state of q3. When either q0 or q3 is full, the flow control
provides backpressure to q1 and q2 as shown with the arrows
in FIG. 7. As aresult, in steady-state measurement, these local
queue information can be used to accurately measure the
throughput. Since the throughput is defined as the offered
load when the latency goes to infinity (or the queue occu-
pancy goes to infinity), this local queue information is suffi-
cient. However, q0 needs to be completely full in order for q1
to reflect the congestion of gc0 and allow R1 to route packets
non-minimally. Thus, using local information requires sacri-
ficing some packets to properly determine the congestion—
resulting in packets being sent minimally having much higher
latency. As the load increases, although minimally routed
packets continue to increase in latency, more packets are sent
non-minimally and results in a decrease in average latency
until saturation.

In order for local queues to provide a good estimate of
global congestion, the global queues need to be completely
full and provide a stiff backpressure towards the local queues.
The stiffness of the backpressure is inversely proportional to
the depth of the buffer—with deeper buffers, it takes longer
for the backpressure to propagate while with shallower buft-
ers, amuch stiffer backpressure is provided. As the buffer size
decreases, the latency at intermediate load is decreased
because of the stiffer backpressure. However, using smaller
buffers comes at the cost of reduced network throughput.

To overcome the high intermediate latency, we propose
using credit round-trip latency to sense congestion faster and
reduce latency. In credit-based flow control, illustrated in
FIGS. 8 A-8B, credit counts are maintained for buffers down-
stream. As packets are sent downstream, the appropriate
credit count is decremented and once the packet leaves down-
stream router, credits are sent back upstream and the credit
count is incremented. The latency for the credits to return is
referred to as credit round-trip latency (tcrt) and if there is
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congestion downstream, the packet cannot be immediately
processed and results in an increase in tert.

Referring to FIG. 8A, conventional credit flow control is
illustrated at 801. As packets are sent downstream (1), the
output credit count is decremented (2) and credits are sent
back upstream (3). This scheme is modified as shown in FIG.
8B at 802 to use credit round trip latency to estimate conges-
tion in the network. In addition to the output credit count
being decremented (2), the time stamp is pushed into the
credit time queue, denoted CTQ. Before sending the credit
back upstream (4), the credit is delayed (3), and when down-
stream credits are received (5), the credit count is updated as
well as the credit round trip latency tert.

The value of tcrt can be used to estimate the congestion of
global channels. By using this information to delay upstream
credits, we stiffen the backpressure and more rapidly propa-
gate congestion information up stream. For each output O,
tert(O) is measured and the quantity td(O)=tcrt(O)-tert0 is
stored in a register. Then, when a flit is sent to output O,
instead of immediately sending a credit back upstream, the
creditis delayed by td(O)-min [td(0)]. The credits sent across
the global channels are not delayed. This ensures that there is
no cyclic loop in this mechanism and allows the global chan-
nels to be fully utilized.

The delay of returning credits provides the appearance of
shallower buffers to create a stiff backpressure. However, to
ensure that the entire buffer gets utilized and there is no
reduced throughput at high load, the credits needs to delayed
by the variance of td across all outputs. We estimate the
variance by finding min [td(0)] value and using the difference.
By delaying credits, the upstream routers observes conges-
tion at a faster rate (compared to waiting for the queues to fill
up) and leads to better global adaptive routing decisions.

The UGAL-L routing algorithm evaluation using credit
latency (UGAL-LCR) is investigated for both WC and UR
traffic using buffers of depth 16 and 256. UGAL-LCR leads to
significant reduction in latency compared to UGALL and
approaches the latency of UGAL-G. For WC traffic, UGAL-
LCR reduces latency by up to 35% with 16 buffers and up to
over 20x reduction in intermediate latency with 256 buffers
compared to UGAL-L. Unlike UGAL-L, the intermediate
latency with UGAL-LCR is independent of buffer size. For
UR traffic, UGAL-LCR provides up to 50% latency reduction
near saturation compared to UGAL-LVC H. However, both
UGAL-LCR and UGALLVC H fall short of the throughput of
UGAL-G with UR traffic because their imprecise local infor-
mation results in some packets being routed non-minimally.

The implementation of this scheme results in minimal
complexity overhead as the following three features are
needed at each router:

tracking credits individually to measure tcrt

registers to store td values

a delay mechanism in returning credits
The amount of storage required for td is minimal as only O(k)
registers are required. The credits are often returned by pig-
gybacking on data flits and delaying credits to wait for the
transmission of the next data flit upstream is required. The
proposed mechanism only requires adding additional delay.

As for tracking individual credits, credits are convention-
ally tracked as a pool of credits in credit flow control—i.e., a
single credit counter is maintained for each output VC and
increments when a credit is received. The implementation of
UGAL-LCR requires tracking each credit individually. This
can be done by pushing a timestamp on the tail of a queue each
time a flit is sent, as shown in FIG. 17(b) with the use of a
credit timestamp queue (CTQ), and popping the timestamp
off the head of the queue when the corresponding credit
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arrives. Because flits and credits are 1:1 and maintain order-
ing, the simple queue suffices to measure round-trip credit
latency. The depth of the queue needs to be proportional to the
depth of the data buffers but the queue size can be reduced to
utilize imprecise information to measure congestion—e.g.,
by having a queue which is only %4 of the data buffer size, only
one of four credits are tracked to measure the congestion.

The cost of a dragonfly topology also compares favorably
to a flattened butterfly, as well as to other topologies. The
flattened butterfly topology reduces network cost of a butter-
fly by removing intermediate routers and channels. As a
result, the flattened butterfly reduces cost by approximately
50% compared to a folded-Clos on balanced traffic. The
dragonfly topology extends the flattened butterfly by increas-
ing the effective radix of the routers to further reduce the cost
and increase the scalability of the network.

A comparison of dragonfly and flattened butterfly net-
works of 64 k nodes shows that a flattened butterfly uses 50%
of'the router ports for global channels, while a dragonfly uses
25% of'the ports for global connections. The flattened butter-
fly requires two additional dimensions, while the dragonfly is
a single dimension. In addition, the dragonfly provides better
scalability because the group size can be increased to scale the
network whereas scaling the flattened butterfly requires add-
ing additional dimensions. With the hop count nearly identi-
cal, the dragonfly trades off longer global cables for smaller
number of global cables required to provide a more cost-
efficient topology better matched to emerging signaling tech-
nologies.

Various embodiments of dragonfly networks described
here also comprise two new variants of global adaptive rout-
ing that overcome the challenge of indirect adaptive routing
presented by the dragonfly. A dragonfly router will typically
make a routing decision based on the state of a global channel
attached to a different router in the same group. Conventional
global adaptive routing algorithms that use local queue occu-
pancies to infer the state of this remote channel give degraded
throughput and latency. We introduce the selective use of
virtual channel discrimination to overcome the bandwidth
degradation. We also introduce the use of credit round-trip
latency to both sense and signal channel congestion. The
combination of these two techniques gives a global adaptive
routing algorithm that attempts to approach the performance
of'an ideal algorithm with perfect knowledge of remote chan-
nel state.

Progressive Adaptive Routing in a Dragonfly
Network

An improved routing method for Dragonfly processor
interconnect networks is proposed here, providing deadlock-
safe adaptive routing that is operable to choose among mul-
tiple legal routes based on congestion or down links. This
adaptive routing method provides improved routing perfor-
mance and tolerance for downed or busy links than prior
methods, and explicitly communicates congestion across
channels as opposed to withholding credits, which may nega-
tively impact bandwidth.

In some embodiments, a network route is selected from
among multiple minimal routes, such as routing in different
dimensions first, and optionally further selected from one or
more non-minimal routes, such as using randomly chosen
hops to avoid congestion or downed links.

Routing choices are presented via tables in one example,
and may be biased toward certain routes or toward minimal or
non-minimal routes depending on the network configuration
and state. For example, route choice may be biased toward
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minimal routing by default for highest efficiency, with a bias
switch toward non-minimal routing to protect a certain net-
work link from arbitrarily or unnecessarily receiving addi-
tional traffic.

Congestion information is utilized in some embodiments
by deriving an anticipated next link congestion from elements
such as counting the number of messages in an output queue
and establishing a receiving buffer congestion estimate based
on factors such as credits or messages in-flight. A node can
query a potential receiving node for the average “next link”
output congestion, enabling the node to make a routing deci-
sion based on avoiding congested or down links.

FIG. 9 shows a Dragonfly network router, consistent with
an example embodiment of the invention. The router block
shown here comprises 48 tiles, with each tile corresponding
to an input/output pair. The tiles are organized in an 8x6
matrix, such that incoming packet data at a particular tile is
routed across the row to one of the 8 columns, then up or down
the 8 columns to one of the 6 rows, arriving at the appropriate
tile for output. The channels in further embodiments feature
multiple virtual channels, virtual channel switching in-flight,
error correction such as SECDED, and input buffering
including dynamic allocation to virtual channels as needed to
improve network performance.

Referring again to the example of FIG. 9, forty of the tiles
connect to external network links, while eight of the tiles
connect to processor cores local to the processor node. Each
tile comprises an input queue, a subswitch, and a column
buffer. The input queue receives packets from a serializer/
deserializer interface to the network, and determines how to
route the packet. The packet is sent across the row bus to the
subswitch in the appropriate column. The subswitch receives
the packets, switches them to the appropriate virtual channel,
and sends the packet out one of the six column buses to the
column buffer in the appropriate row. The column buffer
collects the packet data from the six tiles within the column
and sends the packet data across the network channel.

The dragonfly network topology in this example is a hier-
archical network of two layers of a flattened butterfly topol-
ogy. The first layer is a two-dimensional flattened butterfly
that connects all of the router chips within a local group, such
as a computer cabinet or chassis. Each group is treated as a
very high-radix router, and a single dimension flattened but-
terfly (all-to-all) connects all of the groups to form the second
layer of the dragonfly topology example presented here.

The first dimension within the group, referred to for con-
venience as the “green” dimension, connects the 16 routers
within a chassis. The second dimension within a group is
similarly called the “black” dimension, and connects the six
chassis within a two cabinet group. This is reflected in the
network configuration shown in the network “group” of FI1G.
10, which illustrates six chassis (represented as the six rows),
made up of 16 routers per chassis (represented as the 16
columns).

Groups such as are illustrated in FIG. 10 are further
coupled to one another using links in the “blue” dimension, as
shown in FIG. 11. These “blue” links between groups connect
each group to each other group, to a maximum of 240 blue
links per group in this example, or 241 groups per system.
Each link can comprise multiple ports, such as four ports per
link or optical cable, resulting in four ports connecting each
pair of groups over a single cable. In systems having fewer
groups, unused ports from the 240 blue ports per group can be
used to provide additional bandwidth between configured
groups, such as two links per group pair in a network having
120 groups providing eight ports connecting each pair of
groups.
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In the network, packets route from a source node to a target
node, traversing at least one but possibly all three dimensions
shown in FIGS. 9-11. A routing path traversing all three
dimensions will likely first be routed in the green dimension
and then the black dimension to reach the appropriate node in
a group to link to the target group, then the blue dimension to
reach the intended target group. The packet is then routed in
the green and black dimensions within the group to reach the
intended target node in the target group, resulting in five
routings within three dimensions to reach the target.

The network supports both adaptive and deterministic rout-
ing in one embodiment. Deterministic routing sends a given
packet over a predetermined route over the network irrespec-
tive of network congestion. When multiple deterministic
paths are available, deterministic traffic can be hashed based
on a destination node, address, or other such characteristics to
distribute traffic between the multiple paths. Packets traveling
between the same source and target will in some embodi-
ments arrive at the target in order, as all packets between the
source and target take the same deterministic path.

Adaptive routing permits packets to take different routes
based on congestion levels within the network. In some
embodiments, packets may arrive out of order when using
adaptive routing, and may take non-minimal paths when con-
gestion dictates avoiding a minimal path.

Minimal routing in a dragonfly occurs when a packet
traverses at most one link in a given dimension. Minimal
routing within a group, such as shown in FIG. 10, will there-
fore take at the most one hop in the “green” dimension and
one hop in the “black” dimension. A minimal path between
nodes in different groups will take at most one hop in the
green dimension and one hop in the black dimension in each
group, and will take one additional hop to travel from the
source group to the target group.

As either the black or green dimensions may be traversed
first, there are multiple minimal paths, both in the source and
destination groups. If multiple links between groups exist,
one path may not require a hop in the black or green dimen-
sion in either the source or destination groups, reducing the
total number of hops needed to complete a minimal path to
less than five.

Non-minimal routing can take multiple hops in either the
black or green dimension in the source or target groups,
resulting in more than five hops. Additional hops may be
desirable in circumstances where congestion is present in the
minimal path or paths available to the router, improving the
speed of message delivery to the target while avoiding further
congesting an already congested network link. Further
embodiments attempt to spread traffic over available links,
such as by randomizing or hashing path selection to avoid
creating additional congested network regions as a result of
repeatedly routing the same path around a previously con-
gested link.

In one such embodiment, an intermediate node is chosen in
the group such as that of FIG. 10, such that the message is first
minimally routed to the intermediate node, and then routed
from the intermediate node to the final node in the group. This
results in up to two hops in each of the green and black
dimensions, or double the number of hops in minimal routing
within a group. Routing may be nonminimal within the
source group, nonminimal within the target group, or non-
minimal in both the source and target groups.

Nonminimal routing can also occur between groups, such
as where a message is routed minimally within the source and
target groups but is routed through an intermediate group
between the source and target groups to avoid congestion in
the link between the source and target groups. Routing within
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the source, intermediate, and target groups may further be
minimal or nonminimal, depending on congestion within
each of the groups.

The type of routing used for a given packet or message is
determined in one embodiment by a routing control field in
the packet header. For example, the routing control symbol
may indicate that deterministic non-minimal hashed routing
is to be used when preserving packet order is desired. Packets
are distributed across available paths using the target node as
a hash. Traffic is routed nonminimally, but distributing the
packets among various intermediate nodes in the group
results in reduced hot spots or congestion.

Deterministic minimal hashed routing provides hashing of
packets over minimal paths, which reduces the number of
hops in a given group by permitting routing over alternate
minimal paths, such as black dimension before green dimen-
sion or green dimension before black dimension. This can
result in severe network congestion in certain situations, and
so may not be desirable unless global traffic is particularly
uniformly distributed.

Deterministic minimal non-hashed routing uses a single
deterministic minimal path for all traffic, which provides
packet ordering but does not provide good bandwidth or load
distribution among available paths. Such routing may be used
for infrequent or small messages, such as control messages or
latency-critical messages.

Adaptive routing can be sued as a default routing type when
ordering is not required. Packets will attempt to route mini-
mally, but may take non-minimal paths in groups or between
groups to avoid network congestion. Adaptive routing is pro-
vided in some embodiments using routing tables that provide
two or more minimal and two or more non-minimal ports for
consideration in making a routing choice. A congestion value
is computed for each node or tile in a router is calculated and
distributed to other tiles in the router, such as the router tiles
shown in FIG. 9. The adaptive routing algorithm considers in
this example the two minimal and two nonminimal paths
available, and selects from them based on the congestion
values and optionally on various configured biases.

Port congestion values are derived in a further embodiment
from factors such as downstream port congestion, estimated
far-end link congestion, and near-end link congestion. In a
specific example, two bits of downstream port congestion
information are propagated across the external channel cor-
responding to each tile in a router chip, and updated periodi-
cally. These bits will be generated at the transmitting router
chip by combining a view of congestion of downstream ports
on the chip. The downstream ports that are combined into this
2-bit congestion value are selected via an MMR-configurable
mask at each tile. The congestion values of these downstream
ports are summed and compared to three programmable
thresholds. Ifthe sum is greater than the highest threshold, the
congestion is 2'b11. If the sum is less than the highest thresh-
old, but greater than the middle threshold, the congestion is
2'h10. If the sum is less than the middle threshold and greater
than the lowest threshold, the congestion is 2'b01. Otherwise,
if the sum is less than the lowest threshold, the congestion is
2'600.

On the receiving side of the channel, this 2-bit value is
mapped to a 4-bit value by indexing into a 4-entry by 4-bit
wide downstream congestion remapping table. The estimated
far-end link congestion is computed by tracking the number
of flits sent longer than the channel round trip latency in the
past that have not yet been acknowledged, and adjusting by
the relative rates of flit transmission and acknowledgement
receipt. The mechanism used to do this is a 5-bit wide 32-en-
try deep delay chain. For an MMR-configurable number of
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cycles (1 to 31), the router counts the number of flits trans-
mitted into the tail position of this delay chain. After this
delay, all of the values are shifted. The total expected out-
standing flits on the channel (transmitted and ones for this an
ack is expected) is the sum of the values in this chain. This
value is compared to the outstanding credit count. The total
number of outstanding credits minus the expected flits on the
channel represents an estimate for the number of flits stored in
the remote Input Queue.

The estimated far-end congestion is calculated as a 10-bit
number. This number is converted to a 4-bit index according
to amapping table, and this 4-bit number is then remapped to
another programmable 4-bit value by indexing into a 16-entry
far-end congestion remapping table.

The near-end link congestion is computed by summing the
flits queued in the column buffer waiting to be transmitted
across the link. This sum is also a 10-bit value and is converted
to a 4-bit value according to a mapping table. This 4-bit
number is then remapped to another programmable 4-bit
value by indexing into a 16-entry near-end congestion remap-
ping table.

The remapped 4-bit downstream port congestion value, the
remapped 4-bit far-end link congestion value, and the
remapped 4-bit near-end link congestion value are combined
to produce a single 4-bit congestion value per tile. This com-
bination is done as a 3-input 4-bit unsigned saturating addi-
tion. This 4-bit congestion value is propagated to all other
tiles on the chip to aid those tiles in making informed adaptive
choices.

A “link alive” signal is broadcast from each ntile on the
chip to all other tiles on the chip. This link alive signal for each
ntile indicates whether the corresponding tile has an estab-
lished serial link with the router it is connected to. Ports for
which the link is not alive will be considered invalid from a
port selection perspective. This allows the router to adaptively
avoid recently failed links which software has not yet been
able to remove from the routing tables.

The link alive signals are propagated around the router via
a 2-wire serial chain that connects all of the network tiles.
Each tile places its link status information on the serial chain
atthe appropriate bit timing. If all of the ports presented to the
congestion logic are invalid, the packet will be discarded. In
this case, it will be up to end-point hardware to timeout on the
missing packet and up to higher-level software to retransmit
or handle the error as appropriate.

At each Input Queue, the broadcast congestion values are
used in making the adaptive choice between the two minimal
and two non-minimal port candidates. Before using these
congestion values, bias values are applied to the selected two
minimal and non-minimal port congestion values. First, the
values are logically extended to a 6-bit value by prepending
two zeros to the most significant part of the value. The adap-
tive routing control type (adaptive0, adaptivel, adaptive2, or
adaptive3) is used to select a set of biases from a four entry
bias table. Each entry has a pair of 2-bit shift value that
determines how far left to shift the minimal ports and non-
minimal ports congestion values respectively. The 6-bit
expanded congestion value can be shifted by zero, one, or two
bits. The encoding of this field is 2'b00=shift left by zero bits
(multiply by one), 2'b01=shift left by one bit (multiply by
two), 2'b10=shift left by two bits (multiply by four),
2'b11=reserved.

Each bias MMR also contains a pair of 6-bit values that is
added to the 6-bit expanded minimal and non-minimal con-
gestion values. The addition is performed as a saturating add,
resulting in a 6-bit number. The port corresponding to the
lowest congestion is picked. If there is a tie between a mini-
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mal and a non-minimal port, the router favors the minimal
port. If there is a tie between the two ports presented as
non-minimal or between the two ports presented as minimal,
the choice is arbitrary and may be made in any suitable way.

Table-Driven Routing Mechanism in a Dragonfly
Network

The routing example presented here uses a variety of tables
to determine paths available in routing a packet or message,
and provide routing flexibility in the dragonfly network con-
figuration. Different tables exist to provide routing within a
group and between groups, and for minimal and non-minimal
routing paths.

The routing structures in the example router architecture
presented here are divided into four distinct table sets: a
global non-minimal (GN) table set, a global minimal (GM)
table, a local non-minimal (LN) table set, and a local minimal
(LM)table. The logical flow of this specific example is shown
in FIG. 12.

The global tables are used to determine how to route to a
remote group, when the current group is not the target group.
They are used to route toward a particular optical port on
which to exit the local group. Local tables are used to route to
a particular router chip within the current group. They are
used for “up” or “down” routing within the group for local
routing or for “up” routing in the intermediate group. Mini-
mal tables specify minimal local or global routes. They are
used when routing down or, in the case of adaptive routing,
when attempting to take a minimal path on the way up. Non-
minimal tables specify non-minimal paths, and are only used
when routing “up”. They also provide a “root-detect” mecha-
nism for determining when to stop routing up.

The global non-minimal table set is used to route non-
minimal traffic to an intermediate group. It contains a list of
ports that lead to “safe” intermediate groups, where a “safe”
intermediate group is one that is connected to all other groups.
(In a healthy network, all groups are safe. In a partially
healthy network, the tables should be programmed to avoid
sending traffic to an intermediate group that may not connect
to the target group.) This table set consists of three tables. The
first table selects which rank in the green dimension to
traverse to leave the current (source) group. The second table
selects the black dimension to traverse. The third table selects
the optical port to leave the current router chip on.

The tables are arranged hierarchically in a fixed priority
order. The green dimension table has the highest priority, and
the blue dimension table has the lowest. Each table lists a set
of port numbers to leave the Aries on, or a special value that
indicates that the current table is deferring its priority and the
next table in the priority hierarchy should be consulted. A
special value on the lowest priority (blue) table, if referenced,
will result in an error condition. Each table consists of 128
entries, each of which is a 6-bit port number or the special
value of 6'b11xxxx. Each tableis organized as 16 by 8 entries,
with an accompany 7-bit ECC per each block of 8 entries.

This table should only contain routes to other router chips
oroptical port numbers that ultimately lead to an intermediate
group that can safely route to all other groups in the system.
The table also provides the mechanism that distributes non-
minimal traffic roughly evenly over the groups in the system.
There are 128 entries in each table so that even with an
effective radix-18 dimension, each port is listed 7 or 8 times,
leading to atmost a 14.3% imbalance between two ports in the
dimension. This imbalance can be minimized by having the
imbalanced ports differ on the multiple copies of the table
throughout the group.
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For global deterministic routing, this table set is indexed
into by a hash value including the target, the tgtID, (possibly
the local port number), and the optional hash field from the
packet header (which comes from the packet address). Each
table will get a different index. For global adaptive routing,
one of the blocks of 8 entries is selected from the table at
random. A second entry is selected at random from that 8-en-
try block. The two ports are compared with each other and
with two entries from the global minimal table to determine
which path to route the packet.

The green tables in the ptiles will generally have each of the
15 green ports listed 8 times and will have 8 special values.
Further, at the ptiles, the black tables will have each of the 15
black ports listed approximately 7 times, with approximately
21 entries containing special values. The blue tables will have
each of the optical ports listed about 13 times each.

The green ntile ports will generally have all ofthe entries in
the green table as the special value. The black and blue tables
will be configured in the same proportions as in the ptile case.
The black ntile ports will generally have all of the entries in
the green and black tables as the special value. The blue tables
will be configured in the same proportions as the ptiles.

The global minimal table is used to determine a direct path
from the current group to the target group. It consists of 256
entries, each of which is 81-bits wide. Each entry is divided in
to two parts, a full port set and a restricted port set. The full
port set consist of 8 6-bit port entries and a 3-bit modulo
specifier. The modulo field indicates the total number of valid
ports in the associated entry. The modulo specifier is encoded
as the modulo minus one. That is, a value of 7 in the modulo
field will result in a modulo of 8 operation. The restricted port
set consists of 4 6-bit ports and a 2-bit modulo specifier. Each
81-bit entry will also have an 8-bit ECC.

This table is organized by target group numbers. Each
target group corresponds to a “block” of 1, 2, 4, 8, 16, 32, 64,
or 128 entries in the table, according to the size of the system.
A system with 241 groups would have 1 entry per block in the
table. (15 of the entries would be unused.) A system with
65-128 groups would use 2 entries per block. A system with
33-64 groups would use a block of four entries, and so forth.
The group number along with zero to seven additional ran-
dom (adaptive routing) or hash (deterministic routing) bits are
used to index into the table. Each entry contains a list of ports
leading to Aries reachable from the current point in routing
that connect minimally to the associated target group, or
leading directly to the target group over a blue link.

The full port set is used when just beginning to route
minimally within a group (either at a ptile or an optical ntile)
toward another group, or at any tile when routing non-mini-
mally within the intermediate group and the root is detected in
the local non-minimal table (see below). This side of the table
lists all possible paths to all possible optical ports that are
connected minimally to the group specified by the index. The
restricted port set is used for routing within the group other
than in the root detect and injection cases mention for the full
portsettable. This half of the table only represents paths in the
network that are legal from the current point in the group
network, assuming we are routing minimally.

The key purpose of the restricted port list is to prevent
packets from flowing back in the direction from whence they
came. At a green port, the restricted table entries should
normally only list black and blue ports. At a black port, the
restricted table entries should normally only list blue ports.

When all of the ports listed in the restricted set are invalid,
this indicates to the adaptive routing logic that a packet has
diverged from a legal minimal path. In this case the adaptive
routing logic will pick one of the non-minimal choices. (This
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should never occur for deterministically or minimally routed
traffic as the tables should be written in a consistent manner
such thatapacket never arrives at a point where it cannot route
to the destination. If this does occur, the router will flag an
error and discard the packet.

When there are no legal restricted routed in a tile, the mod
value can be set to any value. The route table should contain
the special value of 6'b11xxxx in all of the entries associated
with the group number. When there is only one legal route, the
port list should contain the legal route listed at least twice and
the mod value set to two or higher to match.

For deterministic routing one of the valid entries in either
the full or restricted set is selected by computing a modulo of
a hash by the number of valid entries in the associated index
Like in the cases above, adaptive routing will choose 2 entries
from the table but computing the mod on a random number
and a second modulo of N-1 to add to the first number plus
one to get the offset of a second random but unique entry in
the table.

Thelocal non-minimal table set is used to pick a router chip
in the local group that is used as the root for non-minimal
routing within the group. This table is used for non-minimal
routing when the source and target group are the same. It is
also used for non-minimal routing in the intermediate group.
This table set is structured like the global non-minimal table,
except that there is no blue table.

The local non-minimal table is indexed randomly for adap-
tive routing or by a hash for non-minimal deterministic rout-
ing. Similar to the global non-minimal table, for adaptive
routing two entries are produced by this table and compared.
To reduce the number of total RAM macros in the design,
these tables will be physically combined with the global
non-minimal tables in RAM.

This table lists Aries that are reachable from this tile that
are safe to use for local non-minimal routing. In a healthy
network, the ptiles and blue (optical) tiles should list all Aries
in the group roughly evenly. Approximately '%ic of the entries
in the green table should list green ports, and Y should con-
tain the special value indicating that the green dimension has
already been satisfied and that the black table should be used.
Similarly, ~% of the entries in the black table should list black
ports, and ~s should contain the special value indicating that
the black dimensions has been satisfied. A special value in
boththe green and black tables indicates that the root has been
reached (“root detect”) and that the packet should be down-
routed from this point.

The green tiles should fill the green table with special
values (indicating that the green dimension has been satis-
fied), and should list the 6 aries reachable (including self,
using the special value) in the black table evenly. The black
tiles should fill both the green and black tables with the
special root detect value. The ptiles and optical tiles need the
full table set. Ntiles could technically do without the green
table, however, the router table example presented here
implements them for flexibility.

The local minimal table is used for minimal routing
(“downrouting”) within the target group, and also when adap-
tively “uprouting” in the target group. This table has 128
entries. Each entry is 52 bits wide, consisting of 8 6-bit port
numbers, a “diverged” bit, and a mod value indicating how
many entries are valid in this line of the table. The diverged bit
indicates that the path within the target group has diverged
from a minimal path, and thus this path cannot be used as a
minimal path when adaptively uprouting, and can only be
used for downrouting. It is similar to the case in the global
minimal table where all the ports in the restricted set are
invalid.



US 9,282,037 B2

19

This table is organized by the “target” Aries number within
the group. Each local Aries number corresponds to a block of
1,2,4,8, or 16 entries in the table, according to the size of the
group. A group of 65-128 Aries would used a block size of 1
entry per local Aries number. A group size of 33-64 Aries
would use a block size of 2, and so forth. The local Aries
number along with zero to four additional random (adaptive
routing) or hash (deterministic routing) bits are used to index
into the table. Each entry contains a list of ports leading to the
associated local Aries.

For deterministic routing one of the valid entries in the
table is selected by computing a modulo of a hash by the
number of valid entries in the associated index. Like in the
cases above, adaptive routing will choose 2 entries from the
table but computing the mod on a random number and a
second modulo of N-1 to add to the first number plus one to
get the offset of a second random but unique entry in the table.

The global non-minimal tables are only used in the source
group for traffic headed to another group. The global non-
minimal and local non-minimal tables are never used concur-
rently. Therefore, to reduce the total number of RAMs
needed, the global non-minimal green table is stored in the
same RAM as the local non-minimal green table. The global
non-minimal black table is stored in the same RAM as the
local non-minimal black table. The global table is stored in
the lower index value portion of each of those two RAMs.

Conclusion

The above examples illustrate how routing in a Dragonfly
network can be improved by using adaptive routing that is
able to select a network path based on factors such as network
congestion or traffic type, and routing tables for various rout-
ings including minimal and non-minimal, and local and glo-
bal routing.

Adaptive routing provides deadlock-safe routing that
chooses among multiple legal routes based on congestion or
down links, providing improved routing performance and
tolerance by explicitly communicating congestion across
channels. Routing is performed across multiple minimal
routes, such as routing in different dimensions first, and
optionally further selected from one or more non-minimal
routes, such as using randomly chosen hops to avoid conges-
tion or downed links.

Congestion information is based on anticipated next link
congestion from elements such as counting the number of
messages in an output queue and establishing a receiving
buffer congestion estimate through factors such as credits or
messages in-flight. A node can query a potential receiving
node for the average “next link” output congestion, enabling
the node to make a routing decision based on avoiding con-
gested or down links. Other features, such as using a deter-
ministic hash or a random number to spread traffic in choos-
ing a routing path are also provided, and are useful in
spreading traffic to prevent congestion.

Routing choices are presented via tables in one example,
and may be biased toward certain routes or toward minimal or
non-minimal routes depending on the network configuration
and state. For example, route choice may be biased toward
minimal routing by default for highest efficiency, with a bias
switch toward non-minimal routing to protect a certain net-
work link from arbitrarily or unnecessarily receiving addi-
tional traffic. In a further example, routing tables include
tables having local and global routing tables, and minimal and
non-minimal paths.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
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skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations of the example embodiments of
the invention described herein. It is intended that this inven-
tion be limited only by the claims, and the full scope of
equivalents thereof.

What is claimed is:

1. A multiprocessor computer system including a proces-
sor interconnect network, comprising:

a plurality of groups of routers, wherein the plurality of
groups of routers are interconnected through an inter-
group interconnection network, each group of routers
comprises a respective plurality of local routers locally
coupled to each other router in the corresponding plu-
rality of local routers through a respective intragroup
interconnection network,

wherein at least a particular router in a particular one of the
plurality of groups of routers is to:
access at least one routing table from a plurality of

routing tables, wherein the plurality of routing tables

comprises at least one local routing table correspond-
ing to the intragroup interconnection network of the
particular group of routers and a plurality of global
routing tables corresponding to the intergroup inter-
connection network;

route data to another router coupled to the intergroup
interconnection network by selecting a network path
from among a plurality of network paths from a target
node to a destination node in the network based on the
at least one routing table, wherein the plurality of
global routing tables include:

anon-minimal table to route non-minimal traffic to an
intermediate group of routers that is connected to
all other groups of routers in the plurality of groups
of routers,

a minimal table to determine a direct path from one
router group to another router group in the plurality
of router groups,

network congestion information corresponding to the
intragroup interconnection network of the particu-
lar group of routers, and

failed network link information corresponding to the
intragroup interconnection network of the particu-
lar group of routers,

wherein the network path is selected based on one or more
of the network congestion information and failed net-
work link information.

2. The multiprocessor computer system of claim 1,
wherein routing within a group comprises using one or more
minimal or non-minimal local routing tables.

3. The multiprocessor computer system of claim 1,
wherein routing between groups comprises using one or more
minimal or non-minimal global routing tables.

4. The multiprocessor computer system of claim 1, the
routing tables comprising minimal and non-minimal tables.

5. A method of operating a multiprocessor computer sys-
tem, comprising:

routing data within a processor interconnect network,
wherein the processor interconnect network comprises a
plurality of groups of routers, the plurality of groups of
routers are interconnected through an intergroup inter-
connection network, and each group of routers com-
prises a respective plurality of local routers locally
coupled to each other router in the corresponding plu-
rality of local routers through a respective intergroup
interconnection network,
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wherein the data is routed from a first router in a first one of

the plurality of groups of routers to a second router in a

second one of the plurality of groups of routers, and

routing the data comprises:

accessing at least one routing table from a plurality of 5
routing tables, wherein the plurality of routing tables
comprises at least one local routing table correspond-
ing to the one of the intragroup interconnection net-
works and a plurality of global routing tables corre-
sponding to the intergroup interconnection network, 10
the plurality of global routing tables comprises a non-
minimal table and a minimal table;

selecting from among a plurality of network paths from
a target node to a destination node in the network
based on information in the plurality of global routing 15
tables and one or more of network congestion infor-
mation corresponding to at least one of the intragroup
interconnection networks and failed network link
information corresponding to at least one of the intra-
group interconnection networks. 20

6. The method of operating a multiprocessor computer
system of claim 5, wherein routing within a group comprises
using one or more minimal or non-minimal local routing
tables.

7. The method of operating a multiprocessor computer 25
system of claim 5, wherein routing between groups comprises
using one or more minimal or non-minimal global routing
tables.

8. The method of operating a multiprocessor computer
system of claim 5, the routing tables comprising minimal and 30
non-minimal tables.



